3.浸透に対する安全性照査

3.1 安全性照査の手順

現況堤防の安全性に関する検討は、「河川堤防の構造検討の手引き(平成14年7月):財団法人国土技術 研究センター」に準拠して実施する。

浸透に対する堤防の構造検討の手順

3.2 検討断面の設定

細分化区間の設定(pp3-3参照)

洪水外力境界(計画高水流量の変化点)より「外力一定区間(一連区間)」を設定する。

「外力一定区間(一連区間)」を以下に示す指標を基に細区分し、堤防構造の検討を行う最小単位であ

る「細分化区間」を設定する。

堤防形状(裏のりの平均勾配)

要注意地形(旧河道)または被災履歴(平成17年度現在)の有無

項目	評価
旧河道, 被災履歴はない	危険度は低い
旧河道,被災履歴がある	危険度は高い

築堤履歴の複雑さ

項目	評価
新設堤防	危険度は低い
<mark>築堤履歴が単純(2回以下)</mark>	危険度はやや高い
築堤履歴が複雑(3回以上)	危険度は高い

照査基準(目標安全率)の設定(pp3-3参照)

堤防裏のりのすべり破壊に対する照査基準(目標安全率)は、以下に示す方法により「細分化区間」ごと に設定する。

堤防の裏のりのすべり破壊に対する照査基準

Fs 1.2(基準安全率) × 1 × 2		
Fs:すべり破壊に対する安全率		
1:築堤履歴の複雑さに対する割増係数		
築堤履歴が複雑(3回以上)な場合	1=1.2	2
築堤履歴が単純(2回以下)な場合	1=1.1	l
新設堤防の場合	1=1.0)
2:基礎地盤の複雑さに対する割増係数		
被災履歴あるいは要注意地形がある	湯合	2=1.1
被災履歴あるいは要注意地形がない	場合	2=1.0

創措	低粉	被災履歴あるいは要注意地形				
「四」「日	IT XX	あり	なし			
	3 回以上	1.6	1.4			
築堤履歴	2 回以下	1.5	1.3			
	新設堤防	1.3	1.2			

検討順位の設定(pp3-3参照)

吉野川における浸透に対する安全性照査は、過去に漏水被害を生じた細分化区間(計45区間)において、 以下の順で実施する。

平成16年度台風による吉野川の漏水被災箇所は、計30箇所である。 このうち、漏水状況,地形条件,外力条件などを基に整理すると、18 浸透に対する安全性照査は、この18細分化区間(23断面)のうち地盤 データのある10細分化区間(11断面)について実施し、第3回委員会に

平成16年度被災の18細分化区間(23断面)のうち、 以外の8細分化区 間(計12断面)については地盤データがないため、調査実施後に安全性 照査を行い、第4回委員会(6月開催予定)において結果を報告する。

平成2~11年に被災した14細分化区間(16断面)については、平成16年 度台風による被災がない箇所であっても潜在的に危険性の高い区間と

調査実施後に安全性照査を行い、第4回委員会(6月開催予定)にお

昭和20~51年に被災した13細分化区間(14断面)については、平成16 年度台風による被災がない箇所であっても潜在的に危険性の高い区間

調査実施後に安全性照査を行い、第5回委員会(10月開催予定)にお

吉野川における細分化区間と検討順位

		ī	吉野川左岸						ī	吉野川右岸			
			日博宁合变		検討順位					日博宁스本		検討順位	
細分化区間	距離程(km)	検討断面	日 信 女 王 平 (車のり)	H16被災	平成被災	昭和被災	細分化区間	距離程(km)	検討断面	日信女王平 (車の1))	H16被災	平成被災	昭和被災
			(2005)	第3回	第4回	第5回				(2005))	第3回	第4回	第5回
1	0.000 ~ 2.410		1.3				1	0.000 ~ 0.550		1.3			
2	2.410 ~ 2.480		1.5				2	0.550 ~ 0.800	R0k600	1.5			
3	$2.480 \sim 3.200$ 3.200 ~ 3.470		1.3				3	$0.800 \sim 1.420$ 1 420 ~ 1 510		1.3			
5	3.470 ~ 3.600		1.5				5	1.510 ~ 3.200		1.3			
6	3.600 ~ 6.680		1.3				6	3.200 ~ 5.825		1.3			
7	6.680 ~ 6.750		1.5				7	5.825 ~ 5.930		1.5			
8	6.750 ~ 7.000		1.3				8	5.930 ~ 7.000		1.3			
9	7.000 ~ 7.500		1.3				9	7.000 ~ 9.815		1.3			
10	7.500 ~ 7.600		1.5				10	9.815 ~ 10.780	R10k000	1.5			
11	7.600 ~ 7.900		1.3				11	10.780 ~ 11.000	P11k200	1.3			
12	8 070 ~ 8 350		1.3				12	11.000 ~ 14.400	R13k200	1.5			
14	8.350 ~ 8.400		1.5				13	14.400 ~ 14.900	R14k500	1.6			
15	8.400 ~ 9.100		1.3				14	14.900 ~ 15.400	R15k000	1.5			
16	9.100 ~ 9.330	L9k200	1.5				15	15 400 ~ 15 800	R15k600	1.6			
17	9.330 ~ 9.590		1.3				15	13.400 13.000	R15k740	1.0			
18	9.590 ~ 10.350	L9k800	1.5				16	15.800 ~ 16.000	R15k850	1.5			
19	10.350 ~ 10.640	1.401-000	1.3	┨───┤───			17	16.000 ~ 18.800	R16k870	1.6			
20	$10.640 \sim 12.600$	L12k300	1.5	├ ───					R18K000	<u> </u>			
21	13 200 ~ 13.200	L12K010	1.0				18	18.800 ~ 22.400	R21k600	1.5			
22	13 600 ~ 14 130	1	1.5				19	22 400 ~ 23 000	R22k600	1.6			
24	14.130 ~ 14.550	t	1.5	1 1			20	23.000 ~ 23.600	R23k200	1.5			
25	14.550 ~ 15.400		1.4				21	23.600 ~ 24.200	R23k900	1.6			
26	15.400 ~ 15.800		1.3				22	24.200 ~ 25.170	R24k700	1.6			
27	15.800 ~ 16.000		1.4				23	25.170 ~ 25.540	R25k280	1.5			
28	16.000 ~ 16.200	L16k100	1.6				24	25.540 ~ 26.500	R26k100	1.6			
29	16.200 ~ 16.820	L16k300	1.5				25	26.500 ~ 26.900	R26k800	1.5			-
30	16.820 ~ 17.245	1471-050	1.4				26	26.900 ~ 27.105	R27k100	1.6			
31	17.245 ~ 18.000	L17k250	1.6				27	$27.105 \sim 27.400$		1.4			
32	18 000 ~ 18 400	L17K/10	1.5				20	27.400 ~ 27.000		1.5			
33	18 400 ~ 18 850	L 18k750	1.6				30	27 700 ~ 28 600	R28k540	1.6			
34	18.850 ~ 19.070	L19k060	1.5				00	00,000 04,050	R29k000	4.5			
35	19.070 ~ 20.300	L20k000	1.6				31	28.600 ~ 31.050	R30k500	1.5			
36	20.300 ~ 20.600	L20k350	1.5				32	31.050 ~ 32.900	R32k500	1.6			
		L21k150					33	32.900 ~ 33.000		1.4			
37	20.600 ~ 24.200	L23k160	1.6				34	33.000 ~ 33.100		1.3			
00	04.000 05.000	L23k600	4.0				35	33.500 ~ 36.700	R33k600	1.5			
38	$24.200 \sim 25.890$	1.266000	1.3				36	$36.900 \sim 37.170$ $37.170 \sim 37.400$		1.5			
40	$25.090 \sim 26.030$ 26.030 ~ 26.600	LZOKUUU	1.5				38	$37.170 \sim 37.400$ 37.400 ~ 37.700		1.3			
41	26 600 ~ 27 800	L 26k900	1.5				39	37 700 ~ 39 000	R37k900	1.4			
42	27.800 ~ 28.440		1.3				40	39.000 ~ 39.150		1.4			
43	28.440 ~ 28.650	L28k500	1.5				41	39.150 ~ 39.260		1.6			
44	28.650 ~ 28.800	L28k700	1.6				42	39.260 ~ 39.600		1.4			
45	28.800 ~ 29.340	L28k920	1.5				43	39.600 ~ 39.700		1.3			
46	29.340 ~ 29.780	1.001.050	1.3				44	39.700 ~ 40.000	D 401 400	1.5			
4/	29.780 ~ 29.890	L29k850	1.5				45	42.200 ~ 42.685	K42K400	1.5			
40 <u>/</u> 0	29.090 ~ 32.500	1356000	1.3	<u> </u>			40	$42.000 \sim 43.000$ 43.600 ~ 43.750		1.3			
49 50	35 700 ~ 35 970	LJJKUUU	1.5				47 48	43 750 ~ 43.750		1.5			
51	35.970 ~ 36 600	ł	1.3		1		49	43.800 ~ 46 600		1.3			
52	36.600 ~ 36.700		1.5				50	46.600 ~ 46.650		1.5			
53	36.700 ~ 37.100		1.5				51	46.650 ~ 47.050		1.3			
54	37.300 ~ 37.420		1.5				52	47.050 ~ 47.100		1.5			
55	37.420 ~ 39.390		1.3				53	47.100 ~ 47.400		1.3			
56	39.390 ~ 40.000	L39k600	1.5				54	48.000 ~ 48.750		1.3			
5/	$40.315 \sim 40.600$		1.5	├ ───			55	48.750 ~ 48.800		1.5			
50	40.715 ~ 41.130		1.3	<u> </u>			00 57	$40.000 \sim 49.400$ 51 150 \sim 52 100		1.3			
60	41.070 ~ 42.100	1	1.3	<u> </u>			58	52 100 ~ 52 800	R52k680	1.5			
61	42.150 ~ 43 720	1	1.3				59	53.050 ~ 54.300	NJ2R000	1.3			
62	43.720 ~ 43.820	1	1.5	1				30.000 01.000	1				
63	43.820 ~ 44.150		1.3										
64	44.150 ~ 44.250		1.5										
65	44.250 ~ 44.850		1.3										
66	44.930 ~ 45.750		1.5										
67	45.750 ~ 46.250	l	1.3	┨────┤───						l			
60	46.200 ~ 46.500		1.5	<u>↓</u>									
59 70	40.000 ~ 48.900	l	1.3	<u> </u>						l			
70	50.400 ~ 50.000	<u> </u>	1.3										
72	50.750 ~ 51.900		1.3										
73	51.900 ~ 51.900	1	1.5										-
74	51.950 ~ 53.000	1	1.3										
75	53.000 ~ 53.100		1.5										
76	53.100 ~ 54.320		1.3										
10													

例

3-3

3.3 検討方法

非定常浸透流解析

河川水および降雨が時間の経過とともにどのように堤体に浸透していくかを解析し、堤防に 対して最も危険な浸潤面を求める。

解説

河川水および降雨が時間とともにどのように堤体に浸透していくかを求めるため、河川水位の時間的 変化として洪水の波形で表し、降雨は大きさを時間分布で表し、これらを堤防に与える外的要因とする。 さらに内的要因として堤体、基礎地盤の土質を透水係数や貯留係数、不飽和水分特性などの水理定数ご とに分類し、解析条件として与える。

飽和と不飽和領域を対象とした解析手法として有効な有限要素法による浸透流解析の基本式は、以下 のとおりである。

安定解析(円弧すべり法)

浸透流解析で得られた堤防に対して最も危険な浸潤線を用いて、安定計算により堤防のすべ り破壊に対する安全率を求める。

解説

安定性の検討は、非定常浸透流解析により求めた各時刻の堤体および基礎地盤の浸透状態(浸潤線)を もとに、安定計算で求めた安全率により判定する。ここでは、外的要因として非定常浸透流解析により 求めた浸潤線を、内的要因として力学定数(内部摩擦角 ',粘着力c')を解析条件として与える。 安定計算の基本式は以下のとおりである。

パイピング破壊に対する検討

浸透流解析で得られた堤防裏のり尻に する安全率を求める。	おける圧
解 説 添水桝地般で沖落土層がたい場合	
「這小住地盤で恢復工層」がない場合 i _v = <u></u> (鉛直方向)	- 12
i _h = —(水平方向)	G / W
ここに、 i _v : 鉛直方向の局所動水勾配 i _h : 水平方向の局所動水勾配 :節点間の全水頭差(m) d _v : 節点間の鉛直距離(m) d _h : 節点間の水平距離(m) _w : 水の密度(10kN/m³)	ここに、
」 提体 透水性地盤	

力水頭を用いて、堤防のパイピング破壊に対

水性地盤で被覆土層がある場合

 $t = (t \cdot H) / (w \cdot P)$

G:被覆土層の重量(kN/m²) W:被覆土層底面に作用する揚圧力(kN/m²) t:被覆土層の密度(kN/m³) H:被覆土層の厚さ(m) w:水の密度(10kN/m³) P:被覆土層底面の圧力水頭(全水頭と位置水頭の差)(m)

3.4 安全性照查結果

浸透に対する現況堤防の安全性照査結果

浸透に対する現況堤防の安全性照査結果

			吉野川左岸	i i					吉野川右岸					吉野川右岸					1
			すへ	いい破壊に対する	安全性	パイピングに	対する安全性				すべ	り破壊に対する	安全性	パイピングに	対する安全性				
細分化区間	距離程(km)	検討断面	裏	ເດບ	表のり	被覆土なし	被覆土あり	細分化区間	距離程(km) 検討断面		裏(טט	表のり	被覆土なし	被覆土あり				
			日標安全率	Fs:ok	1.0 Fs:ok	0.5 > lc:ok	1.0 < G/W:ok				目標安全率	Fs:ok	Fs 1.0:0k	0.5>lc:ok	1.0 < G/W:ok	1			
1	0.000 ~ 2.410		1.3		110 10104		110 0, 1101	1	0.000 ~ 0.550		1.3	. oron			110 0711101	1			
2	2.410 ~ 2.480		1.5					2	0.550 ~ 0.800	R0k600	1.5					1			
3	2.480 ~ 3.200		1.3					3	0.800 ~ 1.420		1.3					4			
4	3.200 ~ 3.470		1.3					4	1.420 ~ 1.510		1.5					1			
5	3.470 ~ 3.600		1.5					5	$1.510 \sim 3.200$ $3.200 \sim 5.825$		1.3					1			
7	6.680 ~ 6.750		1.5					7	5.825 ~ 5.930		1.5								
8	6.750 ~ 7.000		1.3					8	5.930 ~ 7.000		1.3					1			
9	7.000 ~ 7.500		1.3					9	7.000 ~ 9.815		1.3					4			
10	7.500 ~ 7.600		1.5					10	9.815 ~ 10.780	R10k000	1.5								
12	7.900 ~ 7.900		1.5					11	10.760 ~ 11.000	R11k300	1.5								
13	8.070 ~ 8.350		1.3					12	11.000 ~ 14.400	R13k200	1.5								
14	8.350 ~ 8.400		1.5					13	14.400 ~ 14.900	R14k500	1.6					4			
15	8.400 ~ 9.100	1.0k200	1.3					14	14.900 ~ 15.400	R15k000	1.5					1			
10	9.100 ~ 9.530	L9K200	1.3					15	15.400 ~ 15.800	R15k740	1.6					1			
18	9.590 ~ 10.350	L9k800	1.5					16	15.800 ~ 16.000	R15k850	1.5					1			
19	10.350 ~ 10.640		1.3					17	16 000 ~ 18 800	R16k870	1.6	1.26	1.36		0.47	1			
20	10.640 ~ 12.600	L12k300	1.5						10.000	R18k000		1.09	1.24	0.45		1			
21	12.600 ~ 13.200	L12k610	1.6					18	18.800 ~ 22.400	R21k600	1.5					1			
22	13.600 ~ 14.130	1	1.5	+	1	1		19	22,400 ~ 23,000	R22k600	1.6	1				1			
24	14.130 ~ 14.550		1.5					20	23.000 ~ 23.600	R23k200	1.5					1			
25	14.550 ~ 15.400		1.4					21	23.600 ~ 24.200	R23k900	1.6					1			
26	15.400 ~ 15.800		1.3					22	24.200 ~ 25.170	R24k700	1.6	4.00	4.00		0.00	1			
27	15.800 ~ 16.000	L 16k100	1.4	+	+	<u> </u>		23	25.170 ~ 25.540	R25K280 R26k100	1.5	1.03	1.26		0.00	1			
29	16.200 ~ 16.820	L16k300	1.5					25	26.500 ~ 26.900	R26k800	1.5								
30	16.820 ~ 17.245		1.4					26	26.900 ~ 27.105	R27k100	1.6								
31	17.245 ~ 18.000	L17k250	1.6					27	27.105 ~ 27.400		1.4					1			
32	18,000 ~ 18,400	L17k710	1.5	1.65	1.11	0.66		28	27.400 ~ 27.600		1.3								
33	18.400 ~ 18.850	L18k750	1.6					30	27.700 ~ 28.600	R28k540	1.6								
34	18.850 ~ 19.070	L19k060	1.5	1.18	1.26		0.72	31	28 600 ~ 31 050	R29k000	1.5					1			
35	19.070 ~ 20.300	L20k000	1.6					51	20.000 31.000	R30k500	1.5					4			
36	20.300 ~ 20.600	L20k350	1.5					32	31.050 ~ 32.900	R32k500	1.6								
37	20.600 ~ 24.200	L21k150	1.6	1.30	1.25		0.72	33	32.900 ~ 33.000		1.4					1			
		L23k600						35	33.500 ~ 36.700	R33k600	1.5	1.61	1.71		1.03	1			
38	24.200 ~ 25.890		1.3					36	36.900 ~ 37.170		1.5					4			
39	25.890 ~ 26.030	L26k000	1.5					37	37.170 ~ 37.400		1.3								
40	26.600 ~ 27.800	L26k900	1.5	1.24	1.41	0.69		39	37.700 ~ 39.000	R37k900	1.4								
42	27.800 ~ 28.440		1.3					40	39.000 ~ 39.150		1.4					1			
43	28.440 ~ 28.650	L28k500	1.5					41	39.150 ~ 39.260		1.6					4			
44	$28.650 \sim 28.800$	L28k700	1.6	1.53	0.80		0.63	42	$39.260 \sim 39.600$ 39.600 ~ 39.700		1.4					1			
45	29.340 ~ 29.780	LZOK920	1.3	1.55	0.00		0.03	43	39.700 ~ 40.000		1.5					1			
47	29.780 ~ 29.890	L29k850	1.5					45	42.200 ~ 42.685	R42k400	1.5	1.24	0.96		0.28	l l			
48	29.890 ~ 32.500		1.3					46	42.685 ~ 43.000		1.3								
49	34.800 ~ 35.500 25.700 ~ 25.070	L35k000	1.5	1.06	1.19	0.73		47	43.600 ~ 43.750		1.3								
51	35.970 ~ 36.600		1.3					48	43.800 ~ 46.600		1.3								
52	36.600 ~ 36.700		1.5					50	46.600 ~ 46.650		1.5					1			
53	36.700 ~ 37.100		1.5					51	46.650 ~ 47.050		1.3					4			
54	37.300 ~ 37.420		1.5	-				52	47.050 ~ 47.100		1.5					1			
56	39.390 ~ 40.000	L39k600	1.3	-		<u> </u>		54	47.100 ~ 47.400 48.000 ~ 48.750		1.3					1			
57	40.315 ~ 40.600		1.5					55	48.750 ~ 48.800		1.5					1			
58	40.715 ~ 41.130		1.3					56	48.800 ~ 49.400		1.3					1			
59	41.670 ~ 42.100		1.3					57	51.150 ~ 52.100	DECL 000	1.3					1			
60	42.100 ~ 42.150 42.150 ~ 43.720		1.5					58 59	52.100 ~ 52.800 53.050 ~ 54.300	K52K680	1.5					1			
62	43.720 ~ 43.820	1	1.5	1		1			00.000 ~ 04.000	1	1.5					1			
63	43.820 ~ 44.150		1.3													1			
64	44.150 ~ 44.250	I	1.5			ļ		l								1			
65 66	44.250 ~ 44.850 44.930 ~ 45.750		1.3													1			
67	45.750 ~ 46.250		1.3	+	1											検討断面の区例			
68	46.250 ~ 46.500		1.5																
69	46.500 ~ 48.960		1.3													:第3回委員会で検討結果を			
70	50.400 ~ 50.600 50.600 ~ 50.750		1.3								l								
72	50.750 ~ 51.900		1.3	1	1	1				1						: 弗 4 回安貝会 ご 検討 結果を ギ			
73	51.900 ~ 51.950		1.5													:第5回委員会で検討結里を執			
74	51.950 ~ 53.000		1.3							ļ				I	1				
/5 76	53.000 ~ 53.100 53.100 ~ 54.320		1.5	-	-	<u> </u>				-	1	安全性	照査結果の赤	字は照査基準	■以下を示す	検討済み区間			
10	00.100 04.020	1	1.0	1	1	1	1												

土質定数設定図の一例(吉野川R16k870)

必要な定数	安定計算に必要な定数							
不 飽 和 特性区分	単位体積重量 _t (kN/m ³)	内部摩擦角 (°)	粘着力 c (kN/m ²)					
粘性土	-	-	-					
砂質土	20.0	40	1					
粘性土	-	-	-					
粘性土	19.0	30	0					
砂質土	19.0	35	1					
砂質土	19.0	31	1					
砂質土	19.0	33	0					
砂質土	19.0	33	0					
砂質土	19.0	35	0					
砂質土	20.0	39	0					
砂質土	19.0	40	0					
砂質土	20.0	43	0					

浸透流解析結果図の一例(吉野川R16k870)

安定計算結果図(吉野川R16k870)

3.5 必要対策区間の抽出

吉野川左右岸の浸透に対する安全性照査結果および必要対策区間の総括表を以下に示す。

та	Ħ	吉野川					
坦	Ħ	左岸	右岸				
堤防延	長 (km)	54.320	54.300				
検討対象区	間延長(km)	49.130	48.300				
当面の検討対象 (漏水被災	象区間延長(km) 実績箇所)	14.985	28.205				
検討済み区	間延長(km)	2.660	6.855				
照査基準を下まわる	すべり破壊	2.660	3.655				
区間の延長(km)	パイピング破壊	2.660	3.655				
必要対策区	間延長(km)	2.660	3.655				

必要対策区間の総括表